295 research outputs found

    CytoNorm : a normalization algorithm for cytometry data

    Get PDF
    High-dimensional flow cytometry has matured to a level that enables deep phenotyping of cellular systems at a clinical scale. The resulting high-content data sets allow characterizing the human immune system at unprecedented single cell resolution. However, the results are highly dependent on sample preparation and measurements might drift over time. While various controls exist for assessment and improvement of data quality in a single sample, the challenges of cross-sample normalization attempts have been limited to aligning marker distributions across subjects. These approaches, inspired by bulk genomics and proteomics assays, ignore the single-cell nature of the data and risk the removal of biologically relevant signals. This work proposes CytoNorm, a normalization algorithm to ensure internal consistency between clinical samples based on shared controls across various study batches. Data from the shared controls is used to learn the appropriate transformations for each batch (e.g., each analysis day). Importantly, some sources of technical variation are strongly influenced by the amount of protein expressed on specific cell types, requiring several population-specific transformations to normalize cells from a heterogeneous sample. To address this, our approach first identifies the overall cellular distribution using a clustering step, and calculates subset-specific transformations on the control samples by computing their quantile distributions and aligning them with splines. These transformations are then applied to all other clinical samples in the batch to remove the batch-specific variations. We evaluated the algorithm on a customized data set with two shared controls across batches. One control sample was used for calculation of the normalization transformations and the second control was used as a blinded test set and evaluated with Earth Mover's distance. Additional results are provided using two real-world clinical data sets. Overall, our method compared favorably to standard normalization procedures

    Presence of innate lymphoid cells in allogeneic hematopoietic grafts correlates with reduced graft-versus-host disease.

    Get PDF
    BACKGROUND Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD. OBJECTIVE To investigate whether the presence of mature ILCs within G-CSF-mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT. STUDY DESIGN We analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3-lineage-CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples. RESULTS Remission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF-mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups. CONCLUSION The presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients

    De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder

    No full text
    POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder

    An immune clock of human pregnancy

    Get PDF
    The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling-based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2-dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies

    Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.

    Get PDF
    Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis.

    Get PDF
    Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    Do general practitioners and psychiatrists agree about defining cure from depression? The DEsCRIBE™ survey

    Get PDF
    BACKGROUND: This study aimed to document the outcome dimensions that physicians see as important in defining cure from depression. The study also aimed to analyse physicians' attitudes about depression and to find out whether they affect their prescribing practices and/or the outcome dimensions that they view as important in defining cure. METHODS: A 51-item questionnaire based on six validated scales was used to rate the importance of several depression outcome dimensions. Physicians' attitudes about depression were also assessed using the Depression Attitude Scale. Overall, 369 Belgian physicians (264 general practitioners [GPs]; 105 psychiatrists) participated in the DEsCRIBE survey. RESULTS: GPs and psychiatrists strongly agreed that functioning and depressive symptomatology were most important in defining cure; anxious and somatic symptomatology was least important. GPs and psychiatrists differed in their attitudes about depression (p <0.001). Logistic regression revealed that the attitudes of GPs - but not psychiatrists - were significantly associated with their rates of antidepressant prescription (p < 0.001) and that certain attitudes predicted which outcome dimensions were seen as important in defining cure. CONCLUSIONS: Belgian GPs and psychiatrists strongly agreed on which criteria were important in defining cure from depression but differed in their attitudes about depression. The outcome dimensions that were considered important in defining cure were influenced by physicians' attitudes - this was more pronounced in GPs than in psychiatrists

    Stabilization of cytokine mRNAs in iNKT cells requires the serine-threonine kinase IRE1alpha

    Get PDF
    Activated invariant natural killer T (iNKT) cells rapidly produce large amounts of cytokines, but how cytokine mRNAs are induced, stabilized and mobilized following iNKT activation is still unclear. Here we show that an endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α (IRE1α), links key cellular processes required for iNKT cell effector functions in specific iNKT subsets, in which TCR-dependent activation of IRE1α is associated with downstream activation of p38 MAPK and the stabilization of preformed cytokine mRNAs. Importantly, genetic deletion of IRE1α in iNKT cells reduces cytokine production and protects mice from oxazolone colitis. We therefore propose that an IRE1α-dependent signaling cascade couples constitutive cytokine mRNA expression to the rapid induction of cytokine secretion and effector functions in activated iNKT cells
    corecore